

TRANSPORTATION ELEMENT

2.7 INTRODUCTION

Transportation concerns how people and goods move through and around the City. The transportation element addresses how roadway, transit, rail, freight, bicycle, and pedestrian systems can be planned to achieve maximum individual mobility in a manner consistent with community character and environmental protection. California law requires that transportation and land use policies be closely correlated. The Arcata General Plan accomplishes this correlation in two ways. First, travel demand has been forecasted based on the amount and distribution of growth allowed by the land use plan. Second, the policies of the transportation, land use and air quality elements have been interwoven to provide a balance between land uses and the transportation facilities that serve them. The overall theme of this element is achieving a balanced transportation system.

Overview of Existing and Future Transportation Conditions

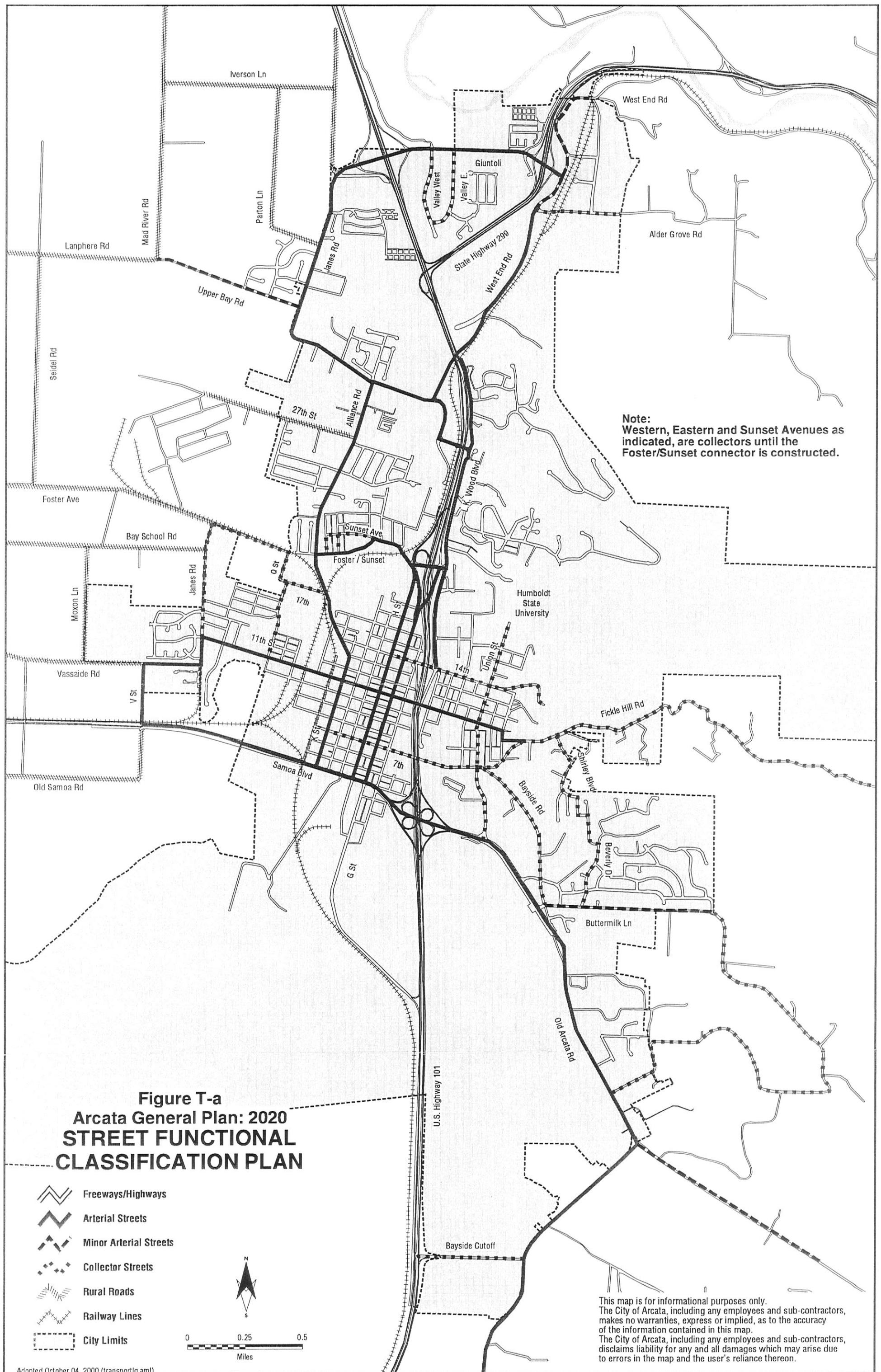
Existing Roadway System. Arcata's pattern of highways and streets is similar to many small and rural communities. The central business district has a traditional grid pattern of streets, with a one-way couplet system comprising the primary arterial. A non-grid series of arterial and collector streets surrounds the central business district and serves outlying residential subdivisions, neighborhood shopping centers, Humboldt State University, and industrial areas. On the outer edges of Arcata, the transportation system is comprised of rural roads and highways serving isolated farms and residences. Arcata is bisected by the State Route 101 freeway, the main state route serving the North Coast of California from San Francisco to Oregon.

Functional Classifications of the Street System. Arcata's existing and planned primary streets and their functional classifications are shown in Figure T-a. The functional classification system is described in the following paragraphs.

Freeways and Highways. Freeways are high speed facilities with restricted access that move traffic on an intercity or regional basis. Access to freeways is limited to grade-separated interchanges. Routes 101 and 299 are designated as freeways. Highways are also high-speed facilities, but with fewer restrictions on access and at-grade intersections. Route 255 is designated as a highway.

Arterial Streets. The primary function of arterial streets is to provide intracity mobility as efficiently as possible. In addition to interconnecting the various parts of the city, arterial streets also provide some access to abutting lands. Compared to other communities, arterials in Arcata have fewer traffic control devices at intersections. As of 1998, all of the traffic signals in Arcata were located on state facilities. Examples of arterials include the "G" and "H" Street one-way couplet, Alliance Road, Samoa Boulevard and L.K. Wood Boulevard.

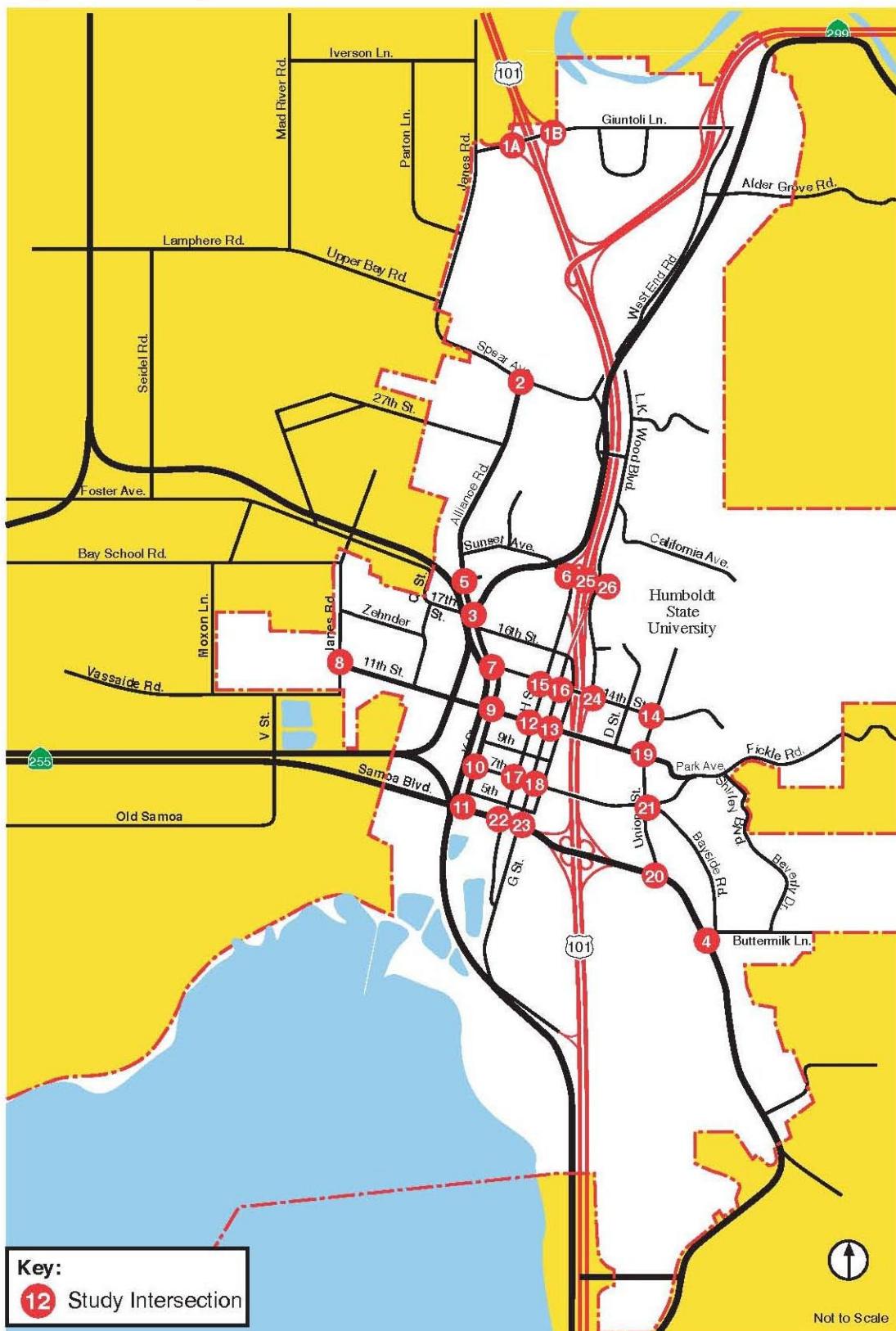
Minor Arterials. Local streets, while providing access to development on adjacent lands, primarily provide mobility between arterial and collector streets.


Examples include Buttermilk, Jacoby Creek (within the sphere of influence) West End, Union, and Upper Bay Road.

Collector Streets. Collector streets provide both mobility and access to land in about equal proportions. These roadways move vehicular, pedestrian, and bicycle traffic within and between residential, commercial, and industrial areas. As the name implies, collector streets are intended to collect traffic from local streets and channel it to the arterial street system. Examples of collector streets include 7th Street, 14th Street, Union Street, Buttermilk Lane, and Fickle Hill Road.

Local Streets. Local streets mainly serve to provide access to development on abutting parcels of land. These low-speed roadways provide access between land uses and collector streets. Local streets serve all types of land use including residential, commercial, and industrial. Often, local streets in residential areas are utilized by through traffic, resulting in complaints from residents about speeding and high traffic noise volumes.

Rural Roads. Rural roads are generally two-lane unimproved facilities located on the outer edges of the community. Their primary function is to provide connection and access to farms, isolated residential areas, and industrial uses. Rural roads usually do not have typical urban improvements such as underground drainage, lighting, sidewalks, or curbs and gutters. Examples of rural roads in the Arcata area include Mad River Road, Upper Bay Road, Jackson Ranch Road, the western portion of Foster Avenue, and Jacoby Creek Road.


Existing and Projected Traffic Volumes and Intersection Levels of Service.

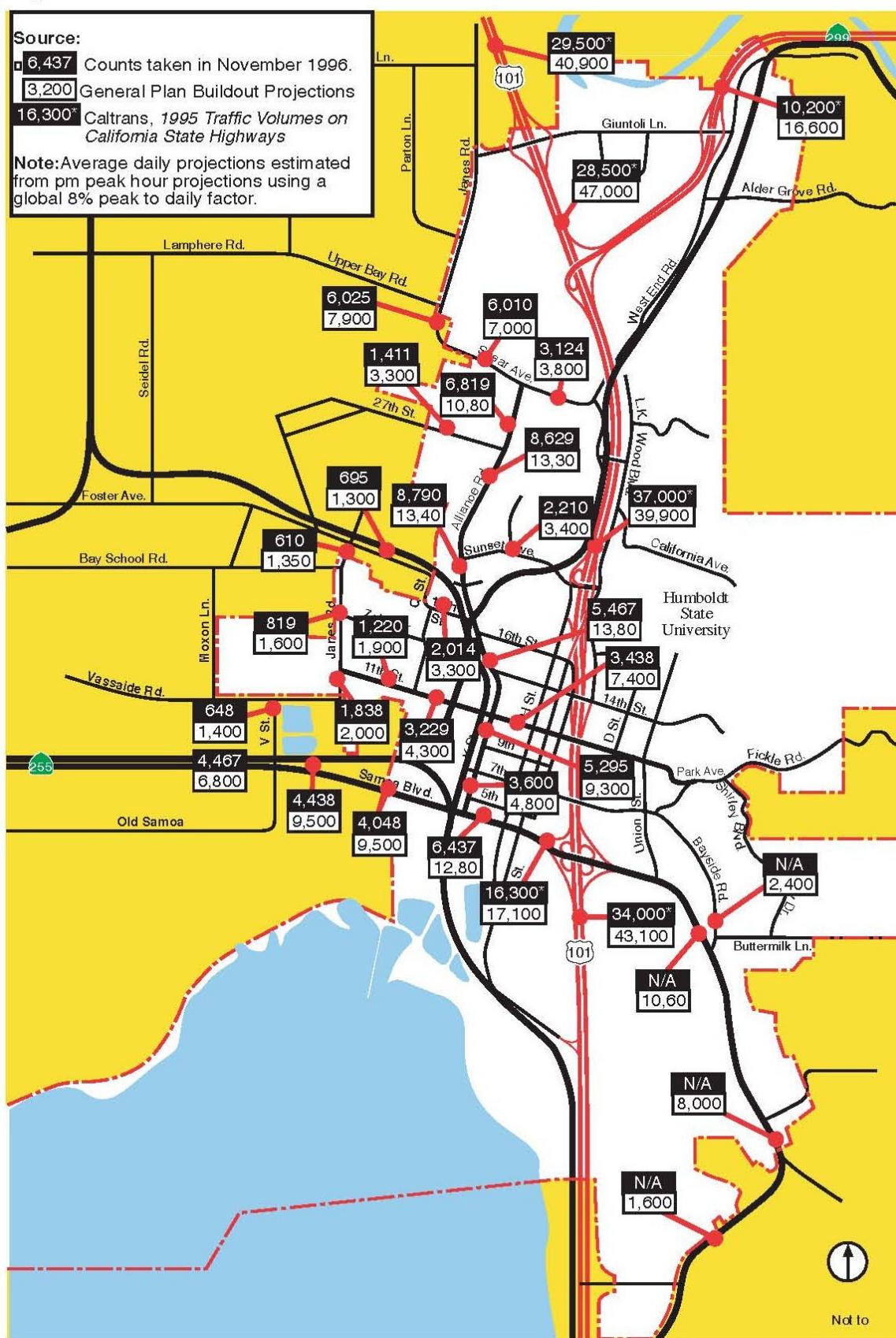
Existing and projected future average weekday traffic volumes are shown for selected street locations in Figure T-c. Existing volumes were established with traffic counts conducted in 1996. Projected traffic volumes were developed using the Arcata Citywide Traffic Model. The model was created to evaluate three potential year 2020 growth or "buildout" scenarios for Arcata. The traffic volumes reported in Figure T-c represent the buildout scenario associated with the land use plan. Table T-1 provides levels of service definitions for intersections. Existing and projected future volume/capacity ratios and afternoon peak hour levels-of-service for key intersections are shown in Table T-2. The locations of key intersections analyzed are shown in Figure T-b.

Traffic Volumes. Arterial streets with the highest daily traffic volumes are Samoa Boulevard, Alliance Road, Spear Avenue, "K" Street, and 11th Street. Collector and local streets carry considerably less traffic than arterial streets. The highest projected traffic volume on a surface street is on Samoa Boulevard west of State Route 101, with an average daily volume of over 17,000 vehicles. The largest percent increases in daily traffic volumes are on Alliance Road, "K" Street, and 11th Street east of "K" Street. Projected future traffic volumes on State Route 101 range from nearly 41,000 vehicles per day north of Arcata to 43,000 vehicles per day south of the City. Traffic volumes on Highway 299 east of Arcata are projected to increase from about 10,000 vehicles per day to over 16,000. Traffic volumes on these freeways reflect continuing growth in areas outside Arcata that will result in increased through traffic, particularly McKinleyville to the north along State Route 101.

Intersection Levels-of-service. Level of service (LOS) is a qualitative and quantitative description of intersection operations defined in terms of a letter grade and either the volume to capacity ratio or total stopped delay per vehicle during the peak hour. Levels of service range from LOS A, representing free flow conditions to LOS F which signifies excessive delays, long vehicle queues, and generally unacceptable conditions. The level of service criteria, defined in the 1995 Highway Capacity Manual prepared by the Transportation Research Board, are used by local agencies nationwide to establish standards of acceptability. What is considered acceptable may vary from one jurisdiction to another.

Figure T - b Key Intersections

Level of service for a signalized intersection is defined by its volume to capacity ratio. A ratio of 1.00 indicates that the intersection's volume equals its capacity. At unsignalized intersections, the total stopped delay is applied only to vehicles required to stop.


TABLE T-1 LEVEL OF SERVICE DEFINITIONS FOR INTERSECTIONS

LEVEL OF SERVICE	SIGNALIZED INTERSECTIONS	UNSIGNALIZED INTERSECTIONS
A	Uncongested operations; all queues clear in a single cycle. Volume to capacity ratio of 0.00 to 0.60.	No delay for stop controlled approaches. Delay equals 0 to 5 seconds.
B	Uncongested operations; all queues clear in a single cycle. Volume to capacity ratio of 0.61 to 0.70.	Minor delay for stop controlled streets. Delay equals 5.1 to 10 seconds.
C	Light congestion; occasional backups on critical approaches. Volume to capacity ratio of 0.71 to 0.80.	Moderate delay for stop controlled approaches. Delay equals 10.1 to 20 seconds.
D	Significant congestion of critical approaches but intersection remains functional. Some vehicles required to wait through more than one cycle during brief periods. No long queues formed. Volume to capacity ratio of 0.81 to 0.90.	Long delay for stop controlled streets. Delay equals 20.1 to 30 seconds.
E	Severe congestion with long standing queues on critical approaches. Blockage of intersection may occur if intersection does not provide protected left turns. Queues may extend into adjacent intersections. Volume to capacity ratio of 0.91 to 0.99.	Very long delays for stop controlled intersections, reaching level of tolerance for average driver. Delay equals 30.1 to 45 seconds.
F	Total breakdown; stop and go operations. Volume to capacity ratio of 1.00 or greater.	Extreme congestion, intolerable delay for stop controlled vehicles. Delay equals 45.1 seconds or greater.

Source: 1994 Highway Capacity Manual (Special Report 209) & Circular 212, Transportation Research Board. Delay for unsignalized intersections is based on average stopped delay in seconds per vehicle.

Table T-2 identifies the existing and projected service levels at the two signalized and twenty-one unsignalized key intersections within the City. Projected service levels are based on the estimated buildout of the land use plan by the year 2020.

Figure T - c Traffic Volumes

TABLE T-2 AFTERNOON PEAK HOUR INTERSECTION SERVICE LEVELS

SIGNALIZED INTERSECTIONS¹	EXISTING		PROJECTED	
	V/C RATIO	LOS	V/C	LOS
23) G Street / Samoa Boulevard	< 1	A	< 1	A
22) H Street / Samoa Boulevard	< 1	A	< 1	A
Unsignalized Intersections¹	Delay	LOS	Delay	LOS
1A) Giuntoli / 101 SB Ramps	8	B	> 45	F
1B) Giuntoli / 101 NB Ramps	3	A	> 45	F
2) Alliance Road / Spear Ave.	5	A	6	B
3) Alliance Road / 17th Street	1	A	14	C
4) Bayside Road / Crescent Way	4	A	7	B
5) Alliance Road / Foster Ave.	1	A	11	C
6) Sunset Ave. / "G" & "H" Streets	4	A	9	B
7) Alliance Road / 14th Street	1	A	4	A
8) Janes Road / 11th Street	2	A	5	A
9) K Street / 11th Street	6	B	10	B
10) K Street / 7th Street	1	A	9	B
11) K Street / Samoa Boulevard	> 45	F	> 45	F
12) H Street / 11th Street	7	B	15	C
13) G Street / 11th Street	10	C	23	D
14) Union Street / 14th Street	2	A	5	A
15) H Street / 14th Street	7	B	12	C
16) G Street / 14th Street	12	C	16	C
17) H Street / 7th Street	4	A	7	B
18) G Street / 7th Street	4	A	11	C
19) Union Street / 11th Street	2	A	3	A
20) Union Street / Samoa Boulevard	4	A	> 45	F
21) Union Street / 7th Street	3	A	4	A
24) L.K. Wood Blvd. / 14th Street	5	A	5	B
25) Sunset Ave. / US 101 NB Ramp	2	A	10	B
26) Sunset Ave. / L.K. Wood Blvd.	8	B	11	C

¹ See Figure T - b for intersection locations. V/C Ratio = volume to capacity ratio.

< less than, > greater than.

All of the intersections analyzed presently operate at LOS C or better with an average delay of twelve seconds or less per vehicle in the afternoon peak hour. The one exception is the intersection of "K" Street with Samoa Boulevard, which operates at LOS F for the

southbound to eastbound left turn. This movement must wait for gaps in both directions of traffic on the four-lane segment of Samoa Boulevard.

Table T-2 also presents the projected afternoon peak hour intersection levels of service for the buildout scenario. At buildout, the two signalized intersections ("G" and "H" Streets at Samoa Boulevard) continue to operate well under capacity at LOS A. Two of the City's unsignalized intersections are projected to operate at LOS F. These are:

1. Giuntoli Lane/US 101 Southbound Ramps – failed service level is for left turn movement from the southbound off-ramp approach onto Giuntoli Lane. This intersection meets the Manual of Uniform Traffic Control Devices' (MUTCD's) peak hour volume warrant for signalization. This intersection should be monitored for possible installation of a traffic signal, all-way stop control, or traffic roundabout.
2. Giuntoli Lane/US 101 Northbound Ramps – failed service level is for left turn movement from the northbound off-ramp approach onto Giuntoli Lane. This intersection meets Manual of Uniform Traffic Control Devices (MUTCD's) peak hour volume warrant for signalization. This intersection should be monitored for possible installation of a traffic signal, all-way stop control, or traffic roundabout.

Other intersections which operate near or over capacity include the unsignalized intersection of "K" Street/Samoa Boulevard. This intersection currently operates at LOS F for the southbound left turn onto Samoa Boulevard, and continues to operate poorly for this movement with buildout under the land use plan. All of the remaining unsignalized intersections are projected to operate at LOS D or better. Most intersections, however, operate at LOS A or LOS B. Existing and projected peak hour service levels are based on existing intersection control and lane configurations as of 1998. Improvements anticipated by this plan will likely improve the LOS to acceptable levels for all intersections.

Existing and Projected

Transit Ridership. The Arcata & Mad River Transit System (A&MRTS) and Humboldt Transit Authority are the two transit systems providing service in the City of Arcata. Transit services are offered along major streets in the city and to major inter-route transfer points including the Arcata Transit Center and Humboldt State University (HSU). HSU student ridership is significant during the school season when extra shuttles are provided to accommodate overflows in the morning peak hour. Table T-3 shows existing and projected A&MRTS bus ridership.

During the school season, A&MRTS ridership increases significantly, by more than 150%. As of 1998, HSU subsidized student bus fares by \$0.60 resulting in increased ridership and

reduced vehicle travel to the university. The subsidy is funded through parking fines at the University. A 1995 survey indicated that 75% of A&MRTS riders are traveling to and from school, 12% for work, and the remaining 14% for various purposes including shopping, recreational, and personal trips.

TABLE T-3 A&MRTS RIDERSHIP SUMMARY: EXISTING AND PROJECTED

PASSENGER TYPE	AVERAGE SUMMER MONTHLY RIDERSHIP	AVERAGE SUMMER DAILY RIDERSHIP	AVERAGE SCHOOL SEASON MONTHLY RIDERSHIP	AVERAGE SCHOOL DAILY RIDERSHIP			
All Passengers	5,900	300	14,900	850			
Students			11,000	750			
DAILY STUDENT RIDERSHIP BY PERIOD				STUDENT RIDERS DURING PERIOD			
7 to 11 AM				400			
11 to 3 PM				250			
3 to 7 PM				200			
PM Peak Hour - All Passengers				70			
Source: A&MRTS superintendent Larry Pardi.							
Note: A&MRTS provides extra shuttles to HSU during school season to accommodate overflow in the morning peak, extra shuttles are not required in the afternoon peak, but buses have standing room only.							
PROJECTED A&MRTS INCREASE IN RIDERS (AT 2020 LAND USE PLAN BUILDOUT)							
	1% Increase in Riders	3% Increase in Riders	5% Increase in Riders				
Passengers	62	183	304				
Note: Increase in daily ridership based on projected land use in traffic analysis zone's [TAZ's] within 1/4 mile of transit corridor stops and 1990 census mode split within each TAZ.							

In 1997, fares represented 20% of the A&MRTS capital and operating costs. The balance of the costs are funded through Transportation Development Act (TDA) funds (70%), State Transit Assistance (STA) funds (5%), and Federal Transit Administration (FTA) Section 18 funds (5%). The two A&MRTS fixed routes serve most of the City, and most points are within 1/3 mile of a bus stop. As of 1998, the system runs on weekdays from 7:00 AM to 7:00 PM with sixty-minute headways. Saturday service is from 9:00 a.m. to 5:00 p.m. with 120-minute headways. In addition to fixed routes, A&MRTS provides "demand responsive" dial-a-ride service. This service accommodates about fifteen to twenty passengers per day. The majority of these passengers are elderly or disabled with destinations to the Mad River Adult Day Health Center.

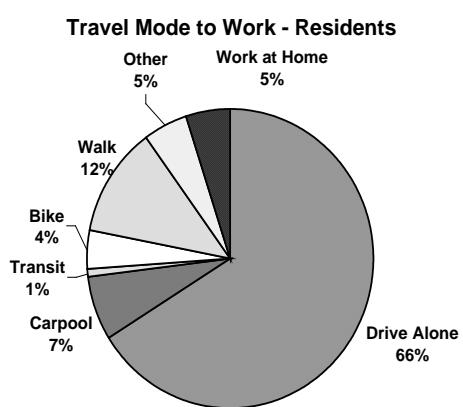
The Humboldt Transit Authority provides regional public transportation through the Redwood Transit System (RTS). This fixed route system serves cities along the Highway 101 corridor from Trinidad to Scotia. The RTS has four stops in Arcata including Humboldt State University and the Arcata Transit Center. The City of Arcata contributes to the funding for RTS. The Arcata Transit Center, located on "F" Street between 9th and 10th Streets, provides a centralized transit facility for buses operated by A&MRTS, RTS, Greyhound, and Amtrak. The Transit Center provides a park-and-ride lot and secure bicycle facilities.

The A&MRTS 1995 Transit Development Plan projected a 16% increase in ridership between 1995 and the year 2000 based on an equal projected increase in population. The plan recommends service improvements comprised of redesigning the present "Red Route" creating a more direct and faster route with consistent thirty-minute headways between downtown and Humboldt State University, and thirty-minute headways between downtown and Sunny Brae. If additional resources become available, the plan recommends providing evening service on the Red Route during the school season and providing a third bus on the Red Route during the school season to achieve thirty-minute headways.

Table T-3 also presents year 2020 projected increases in average school daily riders. This information is derived from growth in population and employment in Traffic Analysis Zones (TAZs) within transit corridors and 1/4 mile from bus stops, and a 1%, 3% and 5% increase in riders over 1990 census mode split information. While relatively small percentages, the increases represent a large increase in riders for Arcata. A sensitivity analysis indicates that these increases in riders could reduce vehicle trips between 0.5% and 2.3% and reduce annual vehicle miles of travel between 0.2% and 1.1%.

Bicycle and Pedestrian Facilities. Arcata's bicycle transportation system consists of Class II bike lanes and Class III bike routes on public streets. Class II bike lanes are on-street facilities delineated from motor vehicle travel lanes by pavement striping and markings. Class III bike routes are specially designated corridors in which the travel lanes are shared by motor vehicles and bicycles. Arcata presently provides a comprehensive bike lane system connecting most major areas of the City on primary arterial streets. Most Class II bike lanes are located on north-south streets, while Class III bike routes provide east-west connection on key streets. The western portion of the City (west of Alliance Road) is least served by bike lanes, providing an opportunity to expand the bike lane system to encompass more residential areas.

Pedestrian facilities are provided throughout Arcata in the form of sidewalks on public

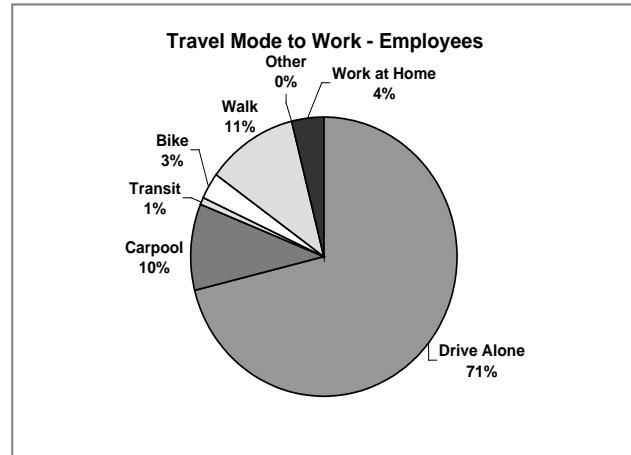


streets. The City's design standard for streets includes five-foot wide sidewalks on both sides of the street with a fifty-foot wide right of way. Many streets, particularly local, collector, and rural roads, do not have curb and gutters or sidewalks – forcing pedestrians to walk on unpaved shoulders or within the travel lanes. While the downtown and areas surrounding Humboldt State University provide a continuous sidewalk system in other areas of the City, there are many gaps in the sidewalk system. The City's standard five-foot wide sidewalk meets the minimum Americans with Disabilities Act (ADA) requirements, but wider sidewalks are desirable for high-traffic pedestrian locations and to encourage walking. Narrow sidewalks are often obstructed with utility poles, signs, and street furniture, further reducing their effectiveness. In addition, the City's street standards lack sufficient width for a planting strip or street trees, which are important elements in promoting walking as an alternative mode of transportation. Opportunities exist, however, within the standard fifty-foot wide right of way to provide street trees in planter boxes located in the parking lane, or to add a planting strip between the sidewalk and travel lanes when new development projects are considered.

Existing Freight and Railroad Transportation Systems. Arcata has designated truck routes on several key arterial and collector streets including Giuntoli Lane, Valley West/Valley East Boulevard, West End Road, Alliance Road, "K" Street, Spear Avenue, L. K. Wood Boulevard, 11th Street, Fickle Hill Road, Janes Road, and Samoa Boulevard. These streets provide intracity connections for freight travel and serve most of the industrial areas of the City. All state facilities including Routes 101, 299, and 255 are designated truck routes.

Arcata has a railroad mainline managed by the North Coast Railroad Authority, with spurs serving industrial properties. Although most rail service was suspended following damage to tracks caused by storms in 1997, the main line and many spurs in Arcata were active prior to that time. They served several industrial uses in the northeast and southwest areas of the City and were used to move freight between Arcata and Eureka. Service consisted of one round trip at night between the hours of 7:30 p.m. and 7:30 a.m. The North Coast

Railroad Authority has permitted passenger service between Arcata and Eureka on certain holidays each year as special event excursions. There has been discussion about initiating regular passenger rail service between Arcata and Eureka, but no plans have been developed.


home. Public transit is the least utilized mode of travel at 1%. While low on a citywide

Existing Modes of Travel. Based on 1990 census data, the majority of Arcata residents drive alone to work (66%) as shown in the accompanying figure. Walking and bicycling modes make up 12% and 4% respectively. About 5% of Arcatans work at

basis, public transit usage is higher in some areas of the City when examined at the census block level. Transit mode of travel in the downtown area, for example, is about 8%. Similarly, walking and bicycling modes are high in certain areas, up to 16%. Travel modes for people who work in Arcata are similar to those of residents, with the exception that more employees drive alone (71%) and carpool (10%). Compared to residents, fewer employees walk (11%) and bike (3%), while the same amount (1%) use public transit.

Existing Travel Demand Management. The most comprehensive use of Transportation Demand Management (TDM) measures is by the City's largest employer, HSU, which has the following programs:

1. HSU subsidizes free travel on A&MRTS buses for students, faculty, and staff. This subsidy covers \$3.00 for every \$11.00 spent for transit service.
2. The University's "Ease the Crunch" campaign offers information to students explaining the proximity of the campus to residential areas and the convenience of transit use. The information includes transit routes and subsidy programs available.
3. HSU provides approximately 2000 bike racks on campus to ensure safety of bicycles.
4. HSU purchased bike racks for buses, enabling members of the university community to combine bus and bicycle commutes to and from the campus.
5. HSU provides the fee for bicycle licensing.

Guiding Principles and Goals.

- A. Provide a transportation system which allows safe and efficient travel.
- B. Create a transportation system which provides a choice of travel modes.
- C. Provide for increased use of alternatives to the single-occupant vehicle, including walking, bicycling, public transit, carpooling/vanpooling, and ridesharing.
- D. Manage the street and highway system to promote more efficient use of existing capacities rather than increase the number of travel lanes.
- E. Create a transportation system which will improve the livability of residential neighborhoods, including use of methods to calm or slow traffic and reduce through-traffic on local neighborhood streets.
- F. Educate residents, employees, and students about the importance of using alternative forms of transportation instead of the single-occupant automobile.
- G. Promote land use patterns that encourage walking, bicycling, and public transit use.
- H. Establish a set of curb parking prices that are high enough to maintain an adequate supply of available spaces.

2.8 POLICIES

The Transportation Element includes the following policies:

- T-1 Balanced Transportation System with Choice of Modes
- T-2 Travel Demand Management
- T-3 Bus Transit System
- T-4 Streets and Highways Plan
- T-5 Bicycle and Pedestrian Facilities
- T-6 Parking Supply and Parking Management
- T-7 Rail and Freight Transportation
- T-8 Financing Transportation Improvements

POLICY T-1 BALANCED TRANSPORTATION SYSTEM WITH CHOICE OF MODES

Objective. Create and maintain a balanced transportation system with choice of bus transit, bicycle, and pedestrian as well as private automobile modes. Reduce the percentage of trips that are made by automobile and provide the opportunity and facilities to divert trips from automobiles to other modes.

- T-1a **Investment in alternative modes.** In order to provide a realistic and cost-effective balance between travel modes, the City shall emphasize investment in alternative modes (bikeways, etc.) as a priority over increasing vehicular capacities of streets.
- T-1b **Interconnections and transfers between travel modes.** The City shall provide and maintain a Transit Center to facilitate interconnection and transfers between bus routes and systems. As funding permits, Transit Center facilities shall be improved to encourage its use as a multi-modal transfer point. Pedestrian and bicycle amenities shall be provided at other locations which serve as modal transfer points such as bus stops and park-and-ride lots.
- T-1c **Intercity travel.** The City shall coordinate with Humboldt County and Caltrans to provide adequate facilities for vehicles, buses, and bicycles to serve intercity demand. Joint efforts may include transportation improvements outside of Arcata which serve intercity travel, such as bicycle links, timed-transfer bus stops, park-and-ride lots, and regional transit service and development of park-and-ride lots in Arcata to reduce intercity vehicular travel.
- T-1d **Critical transportation facilities.** Critical transportation facilities for emergency vehicle access and emergency evacuation shall be maintained and improved as a priority need. Critical transportation facilities include the major routes into and out

of the City such as Highways 101, 299, and 255, their interchanges with City streets and primary intra-city street connections including Samoa Boulevard, 11th Street, "G" and "H" Streets, Sunset Avenue, L.K. Wood Boulevard, Alliance Road, Janes Road, and Giuntoli Lane. Due to the potential for structural failure of these facilities in a seismic emergency, alternative routes and procedures for their use shall be identified.

T-1e **Parking and public transit service study.** The City shall undertake a comprehensive study of parking and public transit service options for the downtown/uptown area and HSU, with cost/revenue implications presented for each option. This study shall be undertaken jointly with HSU.

POLICY T-2 TRAVEL DEMAND MANAGEMENT

Objective. Reduce the percentage of automobiles and reduce the annual vehicle-miles of travel.

T-2a **Land use development patterns.** The City encourages and supports travel demand management efforts. The City shall promote land use and development patterns that encourage walking, bicycling and transit use. In recognition of the link between land use and transportation, the land use plan shall discourage low density, homogenous land-use patterns that foster automobile travel and are impractical to serve with transit. Land use planning shall emphasize high density and mixed land-use patterns which translate into higher transit and pedestrian travel in the downtown and neighborhood commercial areas. Infill, redevelopment, and reuse of underutilized property at higher densities shall be encouraged prior to outward expansion of City boundaries. The following land use measures are emphasized:

1. Mixed-use neighborhood centers within transit corridors which include housing and commercial services near employment.
2. Land use patterns which maximize linking trip opportunities by assembling uses, thus allowing people to take care of a variety of daily needs with a single trip.
3. Clustering of higher density housing and incorporation of residential apartments on upper floors of buildings in the downtown area.
4. Integration of new housing into neighborhood shopping centers, including Sunny Brae, Westwood, and Valley West.
5. Pedestrian-oriented land use and urban design, including the following elements:
 - a. Pedestrian-scale block patterns.
 - b. Incorporate pedestrian and bicycle amenities into public and private projects.
 - c. Design streets for multi-modal use.
 - d. Integrate transit stop facilities into public and private projects.
 - e. Orient buildings and houses to street.

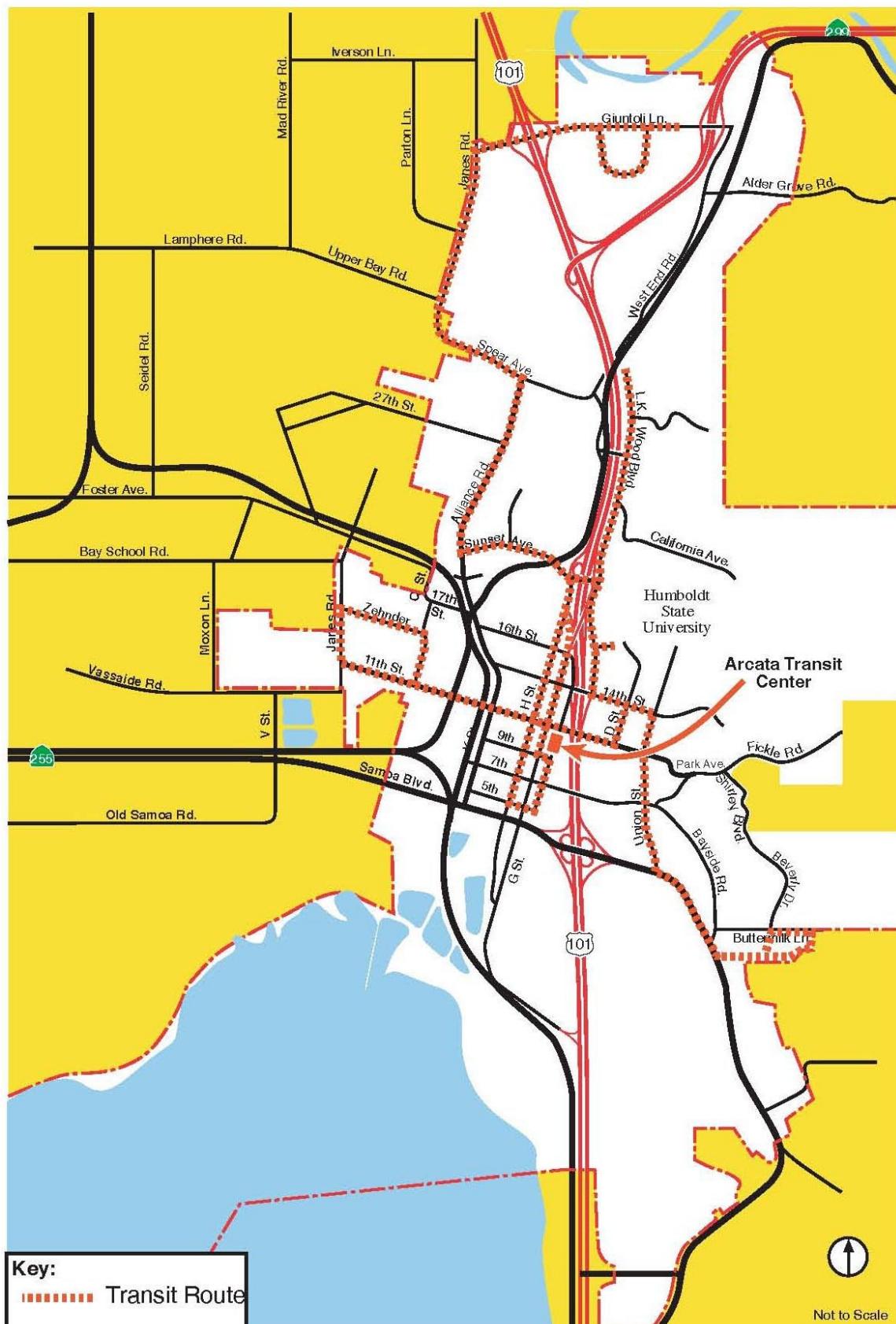
- f. Provide attractively landscaped streets and buffers.
- g. Preserve existing and historic urban fabric.
- h. Eliminate blank wall facades.
- i. Incorporate bicycle routes and enhancements in public and private projects.
- 6. A fixed urban services boundary to reduce sprawl and infrastructure costs.
- 7. Focused growth along existing or planned transit corridors rather than extension of transit to serve new isolated development.
- 8. Prevention of large areas of single uses. Isolated single-use developments at the edge of the City could encourage automobile travel for commuting and errands.
- 9. Provision of convenience retail and services in ground floor space in the downtown to accommodate the needs of employees and reduce the need for mid-day automobile trips.

POLICY T-3 BUS TRANSIT POLICY

Objective. Maintain a bus transit system which connects and serves major commercial and employment areas within Arcata, Humboldt State University, public schools, and higher density residential areas. Increase average citywide transit mode share of daily person trips to 5% from the 1998 level of 1%.

T-3a **5-year transit plans.** The City shall maintain the existing A&MRTS routes (as shown in Figure T-d), frequency, and level of service until increased demand, additional development, and transit planning studies identify the need for either route modification, an expanded route system, or increased service on existing routes. The transit planning studies should evaluate the cost-effectiveness and feasibility of increased routes and service based on projected capital and operating costs, fare box recovery, and federal subsidies (see Policy T-3c for planning criteria).

T-3b **Regional transit service.** Short- and long-range transit plans shall be coordinated with the regional transit service provided by the Redwood Transit System. The City supports regional transit plans which improve service and timed transfers, and reduce headways for intercity travel.


T-3c **Bus route system.** Public transportation is an enterprise activity and its services must be designed to be as efficient and productive as possible. As a transit operator, the City must balance demand with resources for a sustainable system. The City shall consider adding transit routes or modifying existing transit routes and level of service based on the transit planning efforts described in Policy T-3a. Criteria to evaluate and identify thresholds for changes to the A&MRTS system shall be

developed. General guidelines for planning future routes and service include:

1. Accessibility of route to residents and employees. Calculate the number of people living or working within walking distance of the route (typically 1,000 feet). Assuming 1% to 8% of that population would use transit (based on existing transit mode share by census block), determine if the route will serve an adequate population for cost-effective service.
2. Review the housing density within the proposed route corridor. Minimum densities of at least seven dwelling units per acre are necessary to support local transit service. Ideally, the average housing density within a transit corridor or transit served nodes should range between eighteen to twenty dwelling units per acre, depending on the proximity to stops.
3. Evaluate the efficiency and directness of future routes. Compare bus travel time with automobile travel time to avoid a disproportionality which favors automobile use. Determine if the route requires inefficient loops which take riders out of their way and discourages transit use. Design routes to be as direct as possible with turnarounds at endpoints.
4. Evaluate the diversity of the destinations served. Efficient routes serve a diversity of land uses including residential, employment, schools, and shopping. Evaluate the number of activity centers connected by the route and the transfer opportunities provided.

T-3d **Transfers between routes and systems.** The public transit system shall provide convenient transfers between routes, other transit services, and other modes of travel. The Arcata Transit Center shall serve as the primary multi-modal transfer station. Bus stops should be located near municipal parking lots or future park-and-ride lots. The A&MRTS and Redwood Transit System schedules shall be coordinated to provide a timed-transfer system at key stops.

Figure T - d A&MRTS Transit Routes

T-3e Bus stops. Existing bus stops should be improved and new bus stops on future routes should be designed with appropriate amenities and features. Design elements include either bus stop lanes or bus turnouts. Bus stop design amenities which increase rider comfort and feeling of safety and encourage walking and bicycling are emphasized, including shelters, benches, lighting, shade trees, signs, information kiosks, waste receptacles, paved surfaces, and secure bicycle parking. Bus stop areas should be consistently maintained and cleaned, including vandalism repair and graffiti removal. Developers shall be required to provide bus stops and amenities on their frontage if the property is located on an existing or future bus route and is an appropriate location for a stop. Pedestrian and bicycle access should be provided to neighborhood bus stops.

T-3f Transit subsidies. The City supports continued A&MRTS contract services with Humboldt State University to provide subsidized fares to its students and employees. This subsidy, which allows these users to ride without cost to the individual, is the single most important Transportation Demand Management strategy for Arcata.

T-3g Transit implications of new development. The public works department and A&MRTS shall evaluate proposed new development projects and make recommendations prior to project approval regarding transit improvements and road designs.

T-3h Increased weekend transit service. The feasibility and cost-effectiveness of providing weekend bus service to Eureka should be studied.

POLICY T-4 STREETS AND HIGHWAYS PLAN AND POLICY

Objectives. Plan an internal street system consistent with Arcata's small-town, non-metropolitan character and which: 1) efficiently utilizes existing facilities and reduces need for investment in new or expanded street and highway facilities or capacities; 2) improves connectivity of streets to provide for direct routes between origins and destinations; 3) has a high quality of regular maintenance and repair; and 4) maintains a level of service which minimizes delays, but allows for higher levels of congestion during the short peak periods on weekdays.

T-4a Freeways and Highways. State Routes 101 and 299 are designated as freeways for their entire length in the City. State Route 255 is designated as both an arterial and a highway within the City. The following standards shall apply to these classifications:

1. Function. The function of freeways is to provide for high speed automobile and freight movement for intercity and regional travel. Freeway access is highly controlled to achieve this function. Freeway operations, design, and maintenance are under the jurisdiction of the State. Highways (Route 255) also function to move automobiles and freight at relatively high speeds with little friction from intersections and conflicting traffic. Access is controlled on highways, but not as restrictive as freeways. [See functional classification map in Figure T-a.]
2. No additional travel lanes. The City does not support development of any additional through-travel lanes to State Routes 101, 299, or 255 in Arcata or nearby areas. Existing and projected traffic volumes do not warrant additional lanes on these facilities.
3. Auxiliary lanes. The City does not support construction of auxiliary lanes between existing interchanges, or any new interchanges, on State Route 101.
3. Interchange improvements. The City supports interchange improvements that reduce potential conflicts created by unrestricted access from freeway off-ramps.
5. Landscaping. The City encourages Caltrans to maintain and improve landscaping along freeway corridors in Arcata and surrounding areas to improve aesthetics, provide a visual and noise buffer, and maintain the rural and small-town character of the region.

T-4b **Arterial Streets.** Routes designated as arterial streets are shown on the functional classification map in Figure T-a. The following shall apply to these routes:

1. Functional classification and designated routes. Arterial streets are intended to provide a high degree of mobility and serve longer trips within the City. Arterials connect various neighborhoods within Arcata and provide direct connections to the state highway system. Arterials are intended to emphasize traffic movement over access to property.
2. Alternative street cross-sections for arterial streets. The Department of Public Works shall prepare alternative cross-sections for new arterial streets utilizing a smaller right-of-way, and prepare alternative cross-sections for existing rights-of-way that reduce traffic speed and safely accommodate bicycle and pedestrian traffic.
3. Arterial street connectors. Extend existing roads to increase the City's arterial connectivity if proposed development creates significant traffic congestion or overwhelms existing neighborhoods. The Foster Avenue to Sunset connector is a planned road extension if feasible. This project will extend Foster Avenue east of Alliance Road to connect with Sunset Avenue near the State Route 101 interchange to create an east-west facility between Spear Avenue and 14th Street. This extension would bypass the residential neighborhoods on Sunset Avenue, provide a direct arterial connection from Alliance Road to State Route 101, and improve and facilitate bus routing.
4. No additional automobile travel lanes on arterial streets. Street projects to

improve traffic flow shall emphasize intersection improvements and facility maintenance. Construction of additional arterial street travel lanes shall be considered only when no other feasible congestion management methods are available.

5. Minimize the installation of new traffic signals. New traffic signals shall be provided only in instances where there is no feasible alternative to relieve a demonstrated safety problem at an intersection (based on documented accidents). Alternatives which shall be studied prior to signals include roundabouts or installation and monitoring of all-way stop signs.
6. Minor improvements at intersections. Minor projects to improve traffic safety include redistributing lane allocations and coordination of traffic signals. Improvement projects shall be designed to accommodate the needs of pedestrians and bicyclists.

T-4c **Collector Streets.** Routes designated as collector streets are shown on the functional classification map in Figure T-a. The following shall apply to collector routes:

1. Functional classification and designated routes. Collector streets serve to provide access to land use and movement of traffic, pedestrians, and bicycles within residential, commercial, and industrial areas. Collectors generally penetrate, but should not have continuity through residential neighborhoods. Collector streets collect traffic from local streets and distribute it to the arterial street system.
2. Alternative street cross-sections for collector streets. The Department of Public Works shall prepare alternative cross-sections for new collector streets utilizing a smaller right-of-way, and prepare alternative cross-sections for existing rights-of-way that reduce traffic speed and safely accommodate bicycle and pedestrian traffic.
3. No additional automobile travel lanes on existing collector streets. No additional travel lanes are planned on collector streets. If congestion occurs, it shall be managed using alternative methods such as intersection improvements or diversion of trips to other travel modes.
4. Intersection Improvements. No new traffic signals are planned on collector streets. Other alternatives that may be considered to improve safety at intersections include stop signs, roundabouts, or other traffic calming measures.

T-4d **Local Streets.** All streets within the city not classified in another category in Figure T-a are designated as local streets. The following standards apply to these streets:

1. Functional classification and designated routes. Local streets function to provide access to adjacent land use and exist in any land use setting such as residential, commercial, and industrial areas. Movement on local streets is intended to involve traveling to and from a collector facility. Therefore, the trip

length on a local street is intended to be short, volumes should be low, and speeds slow.

2. Alternative street cross-sections for local streets. The Department of Public Works shall prepare alternative cross-sections for new local streets utilizing a smaller right-of-way, and shall prepare alternative cross-sections for existing rights-of-way that reduce traffic speed and safely accommodate bicycle and pedestrian traffic.

T-4e Rural Roads. Routes designated as rural roads are shown on the functional classification map in Figure T-a. The following standards shall apply to these roads:

1. Functional classification. Rural roads serve very low density land uses (mostly agricultural and rural residential) outside of the urbanized area of Arcata. Rural roads are usually not intended to serve through traffic, but often accommodate truck traffic related to the land uses served.
2. Maintain rural character. Rural roads shall be maintained in a manner which will retain their rural character and discourage use as alternatives to arterials and highways for longer distance travel.

T-4f Traffic calming. The City shall employ the following measures to reduce speeds and "calm" traffic in the various neighborhoods:

1. Neighborhood Traffic Management. A Neighborhood Traffic Management Program (NTMP) shall be developed to respond to problems in a consistent and methodical approach. The NTMP should be a two-phase program, with the first phase involving education and community-driven measures, and the second phase involving installation of restrictive physical devices in appropriate circumstances. Neighborhood residents and businesses should be invited to participate in the program so that they can evaluate the benefits and trade-offs of various measures and be involved in the decision-making process.

T-4g Street closures. All neighborhood streets shall be kept open unless there is a demonstrated safety problem. The following traffic calming measures will keep streets open and safe, and will reduce through-traffic:

1. Full or partial diverters or closures of streets.
2. Median barriers at intersections.
3. Diagonal diverters at intersections.
4. Entrance barriers at beginning of street.
5. Conversion of street to one way.

T-4h Street maintenance. The Pavement Management System shall be maintained to identify and prioritize street maintenance projects in the City's Capital Improvement Program (CIP). The maintenance program shall include regular street cleaning and

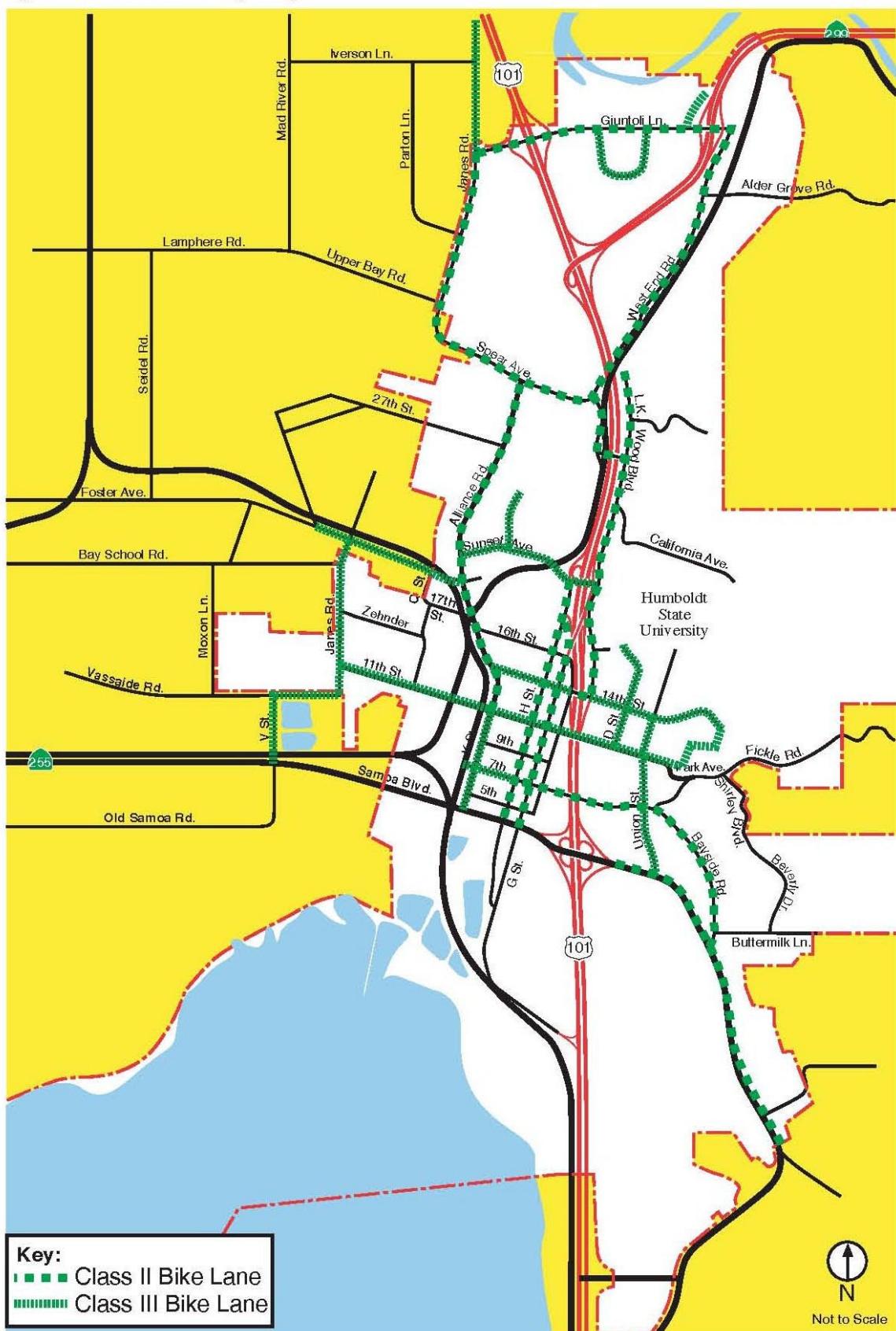
repair of pavement, sidewalks, and bicycle lanes, and pay particular attention to conditions that discourage bike usage.

TABLE T-4 PASSIVE AND RESTRICTIVE TRAFFIC CALMING MEASURES

PHASE I PASSIVE MEASURES	PHASE II RESTRICTIVE MEASURES
Neighborhood campaigns for traffic safety or speed watch reporting	Traffic circles or roundabouts
Passive traffic controls such as stop signs	Medians
Parking restrictions or modifications	Raised intersections and raised crosswalks
Active police enforcement	Speed humps/speed tables
Pavement markings and signage	Curb extensions at intersections or midblock
Neighborhood gateway features	Chicanes or slow points
Visual cues at neighborhood entries	Narrowing travel lanes
Emphasis on visual rather than physical deterrent	Reduced curb radii
Textured crosswalks	

POLICY T-5 BICYCLE AND PEDESTRIAN FACILITIES

Objective. Create a complete, interconnected bicycle and pedestrian circulation system. Increase the percentages of person trips via walking and bicycling. Provide a pedestrian and bicycle system which serves commuter as well as recreational travel.


T-5a Overall bicycle route system and connectivity.

 The bicycle route system plan is shown in Figure T-e. The bicycle route system shall be improved and expanded as necessary to serve new development and activity centers. Routes that provide access to and between major destinations including public facilities, schools, parks and open space, employment, and shopping, shall be the highest priority. Future improvements may be made which upgrade bike routes to a higher class. The City shall:

1. Regularly (at least every two years) update the Arcata Bicycle Plan and coordinate planning efforts with Caltrans and the Humboldt County Council of Government's bicycle plans and advocacy groups to provide continuous bicycle routes.
2. Maintain existing bicycle routes and provide additional routes where feasible connecting the various neighborhoods with Humboldt State University. Class II bike lanes shall be provided on routes with the highest bicycle demand, or where there is sufficient right of way.

Figure T - e Bikeway Map

3. Improve and maintain bicycle infrastructure including removal of height differences between pavement and gutter pans, smooth pavement on street edges, drainage inlet grates, and street cleaning to remove debris from street shoulders.
4. Consider developing standards for a "Bicycle Boulevard," a low-volume and low-speed through-street where bicycles have priority over vehicles, conflicts between vehicles and bicycles are minimized or eliminated, and bicycle travel time is reduced by removal of stop signs and other impediments.

T-5b **Class I bikeways.** Class I bikeways are within completely separated right of way for exclusive use of non-motorized modes. They generally serve corridors not served by streets and provide a recreational opportunity or a high-speed commuter route. Class I bikeways can be multi-use trails serving bicyclists, pedestrians, rollerbladers, and equestrians. A Class I bikeway shall be included on the proposed Sunset-Foster arterial. The following standards shall apply to development of Class I bikeways:

1. Bikeway continuity. Off-street bikeways do not need to be continuous but need to connect to other types of facilities at each end of the bikeway to provide an interconnected system.
2. Right of way opportunities. As opportunities arise, the City shall utilize existing or acquire new easements or right of way for Class I bikeways. Such opportunities may include connecting dead-end streets in new developments with existing neighborhoods, along streets with excess width and unpaved right of way, along drainage channels or creeks, or along abandoned railroad rights of way.
3. Design standards. Two-way Class I bikeways shall be constructed with a minimum width of eight feet and a preferred width of ten feet (five feet for one-way travel). Caltrans design standards shall be used for other design elements such as drainage slope, clearance, signing and striping, and control where bikeways intersect streets.

T-5c **Class II bikeways.** Class II bikeways are lanes located on the outside edge of roadways, including all arterial streets, and delineated from vehicle travel lanes with striping and pavement markings. The following standards apply to Class II bikeways:

1. Design standards. Caltrans design standards shall be used for Class II facilities. Minimum widths are five feet adjacent to on-street parking or vertical curb without on-street parking, and four feet on streets without curb and gutter. Appropriate signing and pavement markings shall be provided to identify the bicycle lane. Caltrans standards shall be used for bike lane markings or transitions at intersections.
2. Required street width. The standard street width of forty-feet curb-to-curb can accommodate Class II bike lanes in both directions if parking is eliminated from one side of the street and vehicle travel lanes are reduced to eleven feet. Bike lanes should be provided in both directions, if feasible, unless the street is one-

way. Streets appropriate for Class II bike lanes include those where on-street parking needs are not critical.

Alternatively, prohibition of parking on one side of the street during certain hours of the day may be considered to accommodate bicyclists.

3. Bike lanes in new development areas.

New collector streets in new development areas should have a cross-sectional standard with a minimum curb to curb width of forty-eight feet, which can contain two twelve-foot vehicle travel lanes, seven-foot wide parking lanes, and five-foot wide bike lanes.

T-5d **Class III bikeways.** Class III bikeways are unmarked bicycle routes which share the street with other vehicles. This type of facility is usually established on low-volume local neighborhood streets, but can be located on any type of street. Many of the existing City designated bicycle routes consist of this type of facility. Any Class III bike routes on routes to school with younger bicyclists should have wider outside lane widths (fourteen to sixteen feet). Prohibition of parking during school hours may be considered to achieve the desired width.

T-5e **Bicycle parking facilities.** Secure bicycle parking facilities should be provided at important activity centers, civic facilities, apartment complexes, employment centers, shopping centers, major bus stops, and schools. Bicycle parking facilities include racks, lockers, and bollards.

Developers shall be required to provide a minimum number of bicycle parking devices at convenient and visible locations within the development. The required number of bicycle parking spaces shall be calculated as a proportion of the number of vehicle parking spaces.

T-5f **Pedestrian enhancements.** Prioritize implementation of improved pedestrian facilities and enhancements in areas of the city with the greatest need including the Arcata Plaza, Westwood Center area, the Sunset Avenue neighborhood, Samoa Boulevard, Alliance Road, Spear Avenue, Janes Road in the vicinity of the Pacific Union School, and Bayside Road in the vicinity of Jacoby Creek School. The following pedestrian improvements and safety enhancements should be considered in future planning for these areas:

1. Close sidewalk gap.
2. Install vertical curbs to keep vehicles from parking on sidewalks.
3. Reduce street crossing distance with curb extensions and smaller curb radii.

4. Use on-street parking as a pedestrian buffer.
5. Install textured crosswalks.
6. Provide adequate street lighting focused on crossings.
7. Restrict parking near crosswalks to improve sight distance.
8. Install rumble strips on approaches to crosswalks.
9. Plant street trees or place street trees in planters in the parking lane.
10. Relocate intersection stop bars five feet back from crosswalks to improve driver and pedestrian visibility.

T-5g

Pedestrian pathways and multi-use trails. Pedestrian pathways or multi-use trails for the exclusive use of non-motorized transportation modes should be provided. Pathways may be long facilities located along corridors or short facilities providing direct access through development projects or connecting areas not directly accessible by streets. Pathways should be planned to serve both recreational and commuter needs. The following shall apply to pedestrian pathways or multi-use trails:

1. Easement dedication. Dedication of easements for pathways through new private developments may be required.
2. Cooperation with local and regional agencies and jurisdictions. The City shall cooperate with other agencies to establish and maintain off-street pathways and trails utilizing creek, utility, and railroad right of way.
3. Foster Avenue Extension. Multi-use paths or trails shall be included in the Foster Avenue extension to Sunset Avenue.
4. Other Locations. Other potential locations for multi-use paths are within the North Coast Railroad right of way from Giuntoli Lane to Samoa Boulevard, along the west side of Samoa Boulevard/Old Arcata Road east of State Route 101, and along the perimeter of Arcata Bay towards Manila.

T-5h

Sidewalks. A continuous and interconnected system of sidewalks shall be provided throughout the City. The existing standard right of way of most arterials, collectors, and local streets (fifty feet) permits a five-foot sidewalk in each direction, the minimum width to comply with Americans with Disabilities Act (ADA) requirements. Some commercial areas in downtown Arcata should have wider sidewalks to accommodate higher levels of pedestrian traffic and window-shopping. The following standards shall apply to sidewalks:

1. Sidewalk continuity. Gaps in existing sidewalks should be closed to provide a continuous pathway. Cul-de-sacs should be discouraged because they disrupt pedestrian connectivity.
2. Sidewalk widths. New development projects shall be required to construct or reconstruct sidewalks along the property frontage. Required widths for new or reconstructed sidewalks are shown in Table T-5.
3. Sidewalk Requirements. Where adequate width exists to maintain ADA

minimum clearance, sidewalk pedestrian amenities should be provided in the downtown commercial area. These include benches, bicycle parking, pedestrian-scale lighting, street trees, flower boxes, trash receptacles, drinking fountains, and awnings. Private development projects shall be required to include sidewalk improvements; other landowners are encouraged to provide improvements.

4. Sidewalk Maintenance. Sidewalk facilities shall be systematically inspected and maintained to clean and repair damaged surfaces and remove impediments such as poles, newspaper racks, and other paraphernalia that interfere with pedestrian flow.

TABLE T-5 SIDEWALK FUNCTIONAL WIDTH REQUIREMENTS

DESCRIPTION	WIDTH
Low density residential area for two-way pedestrian traffic	6 feet
Low intensity commercial area for two-way pedestrian traffic and window shopping	8 feet
Higher density commercial and residential area for two-way pedestrian traffic, window shopping, and street furniture allowance	10 feet
Minimum width of sidewalk at bus stop with bench on sidewalk, without a shelter	8 feet
Minimum width of sidewalk at bus stop with a shelter on sidewalk	12 feet
High intensity commercial area with high pedestrian traffic and a variety of outdoor sidewalk use such as shopping and dining	12 to 15 feet

POLICY T-6 PARKING SUPPLY AND PARKING MANAGEMENT

Objective. Provide an adequate supply of parking in perimeter lots downtown. Minimize the impacts of Humboldt State University parking into adjacent neighborhoods. Ensure that new development provides an adequate but not excessive supply of parking.

T-6a **Downtown parking.** The following shall apply to parking within the Plaza Area Commercial land use category:

1. Develop additional public parking lots. Municipal parking lots shall be provided in the perimeter of downtown to create an adequate parking supply to serve existing businesses, future development, and to replace on-street parking removed for pedestrian, bicycle, and landscaping improvements. One municipal lot is planned to complete the City's parking system, but additional parking lots may be provided if additional demand or opportunities arise.
2. In-lieu fee for on-site parking. Payment of a fee in-lieu of providing required parking spaces may be permitted in the Central Commercial District or for Landmark Historic Structures. Fees collected shall be used exclusively to fund municipal off-street parking lots or alternative travel mode facilities.
3. On-site parking standards. The City shall consider reducing the parking

standards applicable within the Plaza Area Commercial land use category. New development is encouraged to pay in-lieu fees rather than provide parking on-site within the immediate Plaza area. Any on-site parking in the downtown should be located to the rear or side of buildings.

T-6b **Parking in neighborhoods impacted by Humboldt State University.** The City shall employ the following measures to reduce the impacts of HSU-related parking on the surrounding neighborhoods:

1. Management of on-street parking. Metered on-street parking shall continue to be provided along local streets in the neighborhoods south of Humboldt State University to prevent all-day parking by students.
2. Preferential parking zones. The restrictive residential permit parking program shall be maintained for neighborhoods severely impacted by HSU to provide residents and their visitors more on-street parking and to discourage students from driving to campus.
3. Other parking management approaches. Alternative parking management approaches shall be considered if the student population and parking demand increases. Alternative approaches include time limit parking without meters, increasing no-parking zones to decrease supply of spaces, and implementing a strictly enforced tow-away policy. The City encourages Humboldt State University to reduce parking impacts on the City.

T-6c **Parking standards for new development.** The City's parking standards shall be revised to specify a maximum parking ratio as well as a minimum parking ratio for new development. Parking lots should be located, where feasible, to the rear or side of commercial and multi-family residential buildings.

T-6d **Shared or joint-use parking for commercial development.** A 25% reduction in the individual use parking requirements may be allowed where two or more non-residential uses provide joint parking. Developers of projects with appropriate land uses for effective shared parking are encouraged to provide joint parking facilities. Examples of compatible land uses include office buildings and any use that generates primarily an evening parking demand such as restaurants and theaters. The Urban Land Institute (ULI) Shared Parking manual shall be used to establish criteria for the parking generation characteristics of land uses.

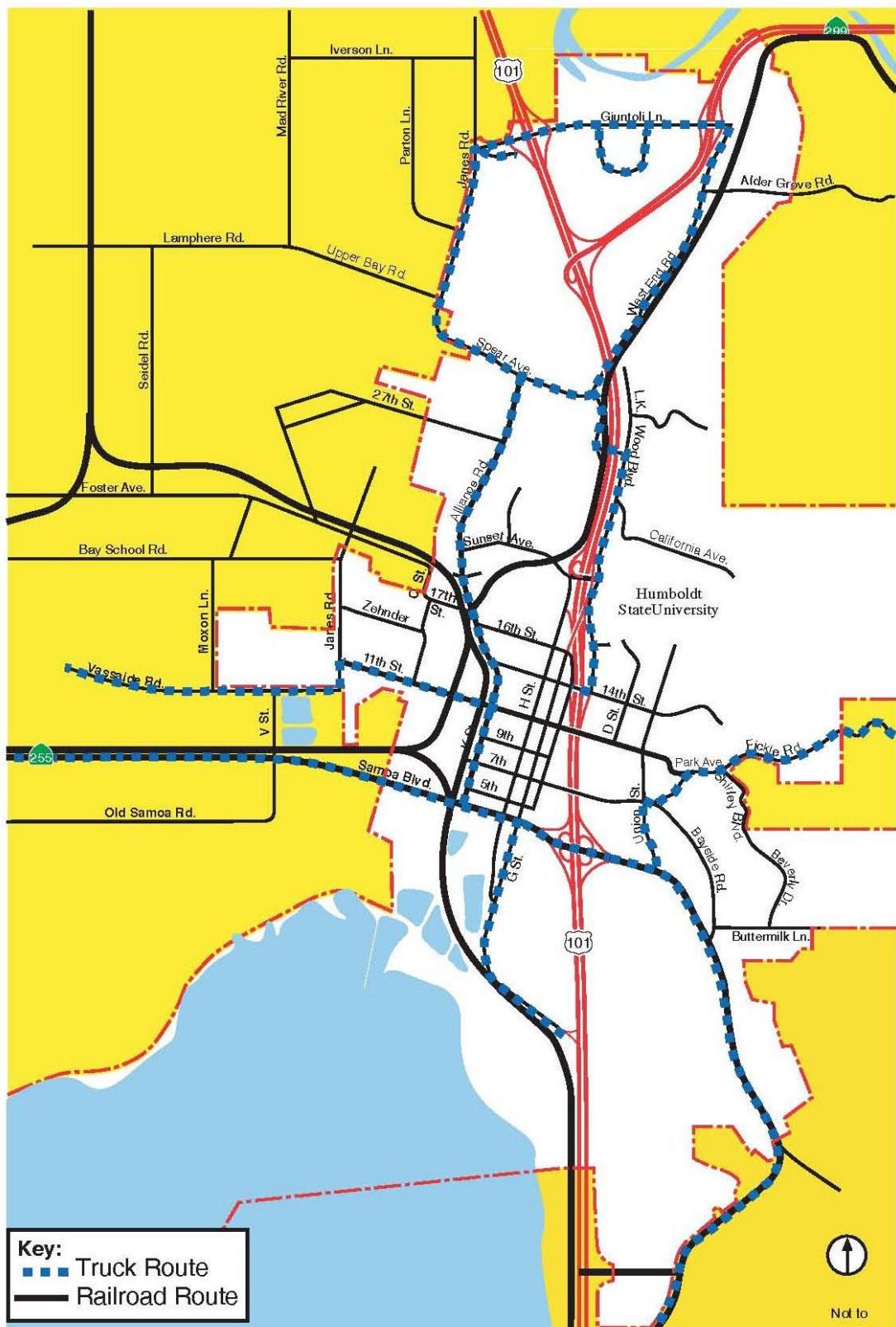
POLICY T-7 RAIL AND FREIGHT TRANSPORTATION

Objective. Provide a transportation system which adequately serves the freight shipment needs of the City's industrial and commercial uses. Recognize that freight transportation via truck or railroad is an essential element of the area's economic base.

T-7a **Retention of railroad right of way.** The North Coast Railroad Authority is encouraged to maintain railroad rights-of-way even if service is abandoned. The City may consider purchase of right of way should the Authority decide to sell. Railroad right of way may potentially be used for creation of multi-use trails. Long range potential uses of railroad right of way include an exclusive bus transitway or passenger rail service.

T-7b **Train service.** Existing or improved levels of freight train service to industrial uses is encouraged as demand increases. The City supports improvements to facilities and operations and increases in freight service as a necessity for maintaining a viable industrial economy. However, freight train service during the day, particularly in the peak morning and afternoon hours, is discouraged. The possibility of providing passenger train service between Arcata and Eureka using renovated historic trolleys should be considered.

T-7c **Truck routes.** The transportation system shall be planned to provide truck mobility to serve all commercial and industrial land uses in Arcata. Specific truck routes are designated in Figure T-f, although other highways, arterials, and collector streets may be designated in the future. The City shall actively enforce truck routes and speed limits.


T-7d **Rails to trails conversions.** The City supports plans to convert abandoned railroad rights-of-way to provide multi-use trails. Planning efforts shall be coordinated with federal, state, and regional agencies to obtain funds to purchase or lease abandoned lines if the railroad authority selects not to dedicate the right of way. If feasible, active railroad lines may be used for multi-use trail purposes.

POLICY T-8 FINANCING TRANSPORTATION IMPROVEMENTS

Objective. Ensure that adequate funding is available to implement transportation improvements required to adequately serve the amount of growth allowed by the land use plan. Ensure that private development provides on-site transportation improvements and contributes an appropriate share of funding for off-site improvements.

T-8a **Developer responsibilities and exactions.** Developers shall be required to construct transportation improvements along their property frontages. Where appropriate, a traffic impact study shall be required which identifies on-site and off-site impacts and mitigation measures.

FIGURE T - f FREIGHT AND RAIL ROUTES

The developer shall be required to provide all necessary access and circulation facilities within the property and such facilities shall be designed to meet City standards. The following improvements may be required:

1. If development is located on an existing street:
 - a. dedication of right of way;
 - b. widening of street along property frontage to provide for a travel lane;
 - c. bicycle lane and parking lane;
 - d. reconstruction of curb, gutter and sidewalk;
 - e. transit facilities and landscaping within the right of way.
2. If development is located in a new growth area not served by streets:
 - a. dedication of right of way to construct a street to connect the project site to a public street;
 - b. construction of the street and connecting intersection(s) to City standards;
 - c. after the dedication is accepted, the City will maintain the street.
3. In all instances, the developer shall be responsible for mitigating any off-site traffic impacts of the proposed development in a manner consistent with the policies of this plan. Measures may include a reduction in the size or density of the development; installation of pedestrian, bicycle and transit amenities to encourage alternative travel modes; or implementation of Transportation Demand Management measures.

T-8b **Subdivision improvements.** All on-site transportation infrastructure shall be constructed using standards approved by the City. Developers are required to establish mechanisms, such as homeowners associations, to provide future maintenance of on-site streets and intersections that are not dedicated. The City may elect to require streets connecting to a public street to be dedicated to the City.

T-8c **Traffic impact fees.** The City may adopt a citywide traffic impact fee in accordance with the requirements of AB 1600 to fund transportation improvements to mitigate the traffic impacts of new development. The traffic impact fee may substitute in whole or in part for the off-site mitigation requirements described in Policy T-8a, but would be in addition to the developer's responsibility for on-site and frontage improvements. The traffic impact fee may be used to fund roadway extensions, intersection improvements, safety improvements, transit facility improvements, and pedestrian and bicycle facilities or amenities.

T-8d **Transit finance.** A&MRTS should continue to fund capital and operating expenses through fare box revenue, Humboldt State University subsidies, and state and federal subsidies. The City will explore the possibility of new development contributing a one-time fee towards A&MRTS capital expenses through the citywide traffic mitigation fee ordinance.

2.9 IMPLEMENTATION MEASURES

#	IMPLEMENTATION MEASURE DESCRIPTION	RESPONSIBLE PARTY	TIME FRAME
LU-1	Amend LUC to Incorporate Street Standards Add Street Standards to City's LUC (formerly LUDG)	Community Devel. Dept.	Year 1
T-1	Create Neighborhood Traffic Management Program Prepare and adopt a two-phase traffic management program. Phase 1 will involve education and community-driven measures, including developing a handbook describing procedures for residents to initiate a local NTMP. At a minimum, the handbook should define the procedures for initiation, types of data to be collected, a toolbox of measures, a method for establishing priorities, and potential funding mechanisms. Phase 2 will involve installing traffic calming devices in appropriate circumstances.	Public Works Dept.	Year 1
T-2	Pavement Management Program A pavement management program will evaluate roadway conditions, and schedule and complete needed maintenance and repair in a timely manner.	Public Works Dept.	Ongoing
T-3	Capital Improvements Program (CIP) Include transportation improvements, including bicycle and pedestrian facilities, in the City's CIP	Public Works Dept.	Annually
T-4	Adoption of Traffic Mitigation Fee Ordinance Adopt a citywide traffic impact fee in accordance with AB 1600 to mitigate the traffic impacts.	Public Works Dept.	Year 1
T-5	Develop Additional Public Parking Lot on West Side of Downtown	Community Devel. Dept.	Year 2
T-6	Develop Comprehensive Pedestrian Plan and Priorities Seek sidewalk improvement program funding.	Public Works Dept.	Ongoing
T-7	Bicycle Boulevards Provide primary bicycle corridors between major activity centers. Clearly sign all bicycle boulevards and include traffic calming measures to discourage automobiles.	Public Works Dept.	Year 1
T-8	Foster Avenue Connection Secure funding for the Foster Avenue connection, including bicycle paths.	Public Works Dept.	Year 3